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Overview
● Front-End: Isabelle’s Document Model

●Back-End: Global/Local Contexts

●HOL Semantics and Foundations

●Conservative Extensions of Contexts

●Specification Constructs in Isabelle/HOL

●More on Proof Automation
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Isabelle Document Model 

and  
Global/Local Contexts 
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What is Isabelle as a System ? 
● Global View of a “session“

“Document“ 
       vs 
“Theory”
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Revision: Documents and Commands
● Each position in document corresponds


– to a “global context” Θ 
(containing a signature Σ and a set of axioms A)


– to a “local context” Θ, Γ

– [reminder] composing a thm       Γ ⊢Θ φ   

● There are specific „Inspection Commands“ that give  

access to information in the contexts


– thm, term, typ, value, prop   : global context
– thm, print_cases, facts, ... ,  : local context
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semantic 
evaluation  

What is Isabelle as a System ? 
● Document “positions” were evaluated to an 

implicit                       state, corresponding  
to the                        global context Θ
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Commands for Basic Theory Extensions

● Isabelle has (similar to Eclipse) a  
„document-centric“ view of development:  
there is a notion on an entire “project” 
which is processed globally.


● Documents (projects in Eclipse) consists of 
files (with potentially different file-type); 
.thy files consists of headers commands. 

● A Document Configuration is specified in ROOT file
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Theory Extensions 

and  
Global/Local Contexts 
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Commands for Basic Theory Extensions
● Type Declaration  

 
 
                example:    typedecl “L"  

● (Unspecified) Constant Declaration: 
                 
 
                example:    consts True :: “bool”           

  consts  c :: „τ“

typedecl “(α1,...,αn)<typconstructor-id>”    
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Commands for Basic Theory Extensions

● Constant Declaration “Semantics”: 
                 
        (Σ, A) ”∈” Θ     

      

 
 
       (Σ ⊕ (c ↦ τ) , A) ”∈” Θ' 

• where the constant  c is “fresh” in S

  consts  c :: „τ“
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Commands for Basic Theory Extensions

● Constant Declaration “Semantics”: 
                 
        (Σ, A) ”∈” Θ     

      

 
 
        (Σ , A ⊕ (<name> ↦ <prop>)) ”∈” Θ' 

• where the constant  c may be arbitrary.

axiomatization  c :: „τ“                      
   where  <name> : “<prop>”
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Foundation:


Introduction to  
HOL Semantics 
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A Critique on Axioms

• In general, theory extensions are problematic

• In particular, axioms are extremely dangerous.  
Consider: 
 
  
 

• Wouldn’t be dead useful, n’est-ce pas ?

• But is inconsistent:  
Consider the instance:            Y(¬) = ¬(Y(¬))

axiomatization  Y :: „('α ⇒ 'α) ⇒ 'α“                      
   where  rec : “Y f = f(Y f)”
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How to built theories  
in a logically safe manner ?

• This leads to are a number of questions:

– Is the logic HOL consistent ?

– Is HOL correctly implemented in Isabelle ?

– How to extend HOL in a logically safe way ?

– Is there a method that scales to the  
entire HOL library, i.e. to „Main“ ?

We will address these questions one by one ...
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How to built theories  
in a logically safe manner ?

• HOL consistency

– ... can only be answered relatively,  
i.e. relative to a logical system which gives 
a formal „interpretation“ of HOL terms.

– the gold-standard for mathematicians and  
logicians is „Zermelo-Fraenkel Set Theory“ 
plus „axiom of choice“, called ZFC.

– it is possible to give several interpretations of HOL 
in ZFC and prove the validity of HOL’s  core axioms 
relative to these interpretations. 
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How to built theories  
in a logically safe manner ?

• HOL consistency

– ZFC gives a kind of „universe of sets“ V with the  
properties:

• an infinite set I is part of V
• any product V‘× V‘‘ is part of V, if  V‘ and  V‘‘ are
• any potence set 𝒫(V‘) is part of V provided that V‘ is. 

(this is not possible in a typed set-theory) 

– Since relations  𝒫(V‘× V‘‘) are part of V, it is possible to 
express in V function spaces.

– ZFC gives us an “untyped set-theory”
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How to built theories  
in a logically safe manner ?

• HOL consistency

– Since relations  𝒫(V‘× V‘‘) are part of V, it is possible  
to define in V the following function spaces: 

• A  ⇒standard B =  {f: 𝒫(V‘× V‘‘) | f ≠ ∅ and f is function}

• ∅ ⊂ A  ⇒henkin B  ⊆ {f: 𝒫(V‘× V‘‘) | f ≠ ∅ and f is function}

• A  ⇒construct B  = {f: 𝒫(V‘× V‘‘) | f ≠ ∅ and  

                                                 f is a computable function} 
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How to built theories  
in a logically safe manner ?

• HOL consistency

– On this basis, we can give a standard  
/ Henkin-style / constructivist  
interpretation of HOL types τ  into V:

– Istandard , the “standard model” 
– Ihenkin  , the Henkin-model 
– Iconstruct , the constructivist model  
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How to built theories  
in a logically safe manner ?

• HOL consistency

– On this basis, we can give a standard interpretation  
of HOL core types into V

• Istandard  ⟦bool⟧ = {a,b}   (where a,b are some distinct       
                           elements from the infinite set I)

• Istandard  ⟦ind⟧ = I

• Istandard  ⟦τ ⇒ τ‘⟧ =  Istandard⟦τ ⟧ ⇒standard   Istandard⟦τ‘⟧   
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How to built theories  
in a logically safe manner ?

• HOL consistency

– On this basis, we can give a Henkin interpretation  
of HOL core types into V

• Ihenkin  ⟦bool⟧ = {a,b}   (where a,b are some distinct       

                           elements from the infinite set I)
• Ihenkin  ⟦ind⟧ = I

• Ihenkin  ⟦τ ⇒ τ‘⟧ =  (Ihenkin⟦τ ⟧)   ⇒henkin   (Ihenkin⟦τ’⟧)   
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How to built theories  
in a logically safe manner ?

• HOL consistency

– On this basis, we can give a standard interpretation  
of HOL core types into V

• Iconstruct ⟦bool⟧ = {a,b}   (where a,b are some distinct       
                           elements from the infinite set I)

• Iconstruct  ⟦ind⟧ = I

• Iconstruct  ⟦τ ⇒ τ‘⟧ =  Iconstruct⟦τ ⟧ ⇒construct   Iconstruct⟦τ‘⟧  

– It is easy to show that our typing  
rules are consistent  with Istandard, Ihenkin , Iconstruct.
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How to built theories  
in a logically safe manner ?

• HOL consistency

– Core HOL needs a small number of axioms.

– Traditional papers [Andrews86] reduce it  
to 6 axioms plus the axiom of infinity: 
 
 
   ∃ f::ind ⇒ ind. injective f ∧ ¬surjective f

– The presentation of the axiomatic core  
in Isabelle/HOL looks as follows:
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How to built theories  
in a logically safe manner ?

• The presentation in Isabelle/HOL looks as 
follows:

– refl: "t = (t::'a)"  

– subst: "s = t ⟹ P s ⟹ P t" 

– ext: "(⋀x::'a. (f x ::'b) = g x) ⟹ (λx. f x) = (λx. g x)" 

– the_eq_trivial: "(THE x. x = a) = (a::'a)" 

– impI:"(P ⟹ Q) ⟹ P⟶ Q" 

– mp: "P ⟶ Q ⟹  P ⟹ Q"  

– iff: "(P ⟶ Q) ⟶ (Q ⟶ P) ⟶ (P = Q) 

– True_or_False: "(P = True) ∨ (P = False)"
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How to built theories  
in a logically safe manner ?

• where: 
– True is an abbreviation for  

                                     ((λx::bool. x) = (λx. x)) 
– All(P) for  (P = (λx. True)) 

– False for (∀P. P) 

– Not P for P ⟶ False 

– and  for ∀R. (P ⟶ Q ⟶ R) ⟶ R 

– or   for ∀R. (P ⟶ R) ⟶ (Q ⟶ R) ⟶ R
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How to built theories  
in a logically safe manner ?

• It is straight-forward to prove for the semantic interpretations 
I
standard

, I
henkin 

, I
construct  

for HOL types, terms and formulas in ZFC

• (Meta) Theorem: Consistency relative to ZFC

        Istandard : τ => V and Istandard 
: T => V build a model for  

Core-HOL, i.e. they satisfy all core axioms for all  
assignments of the free variables they contain. 

• (Meta) Theorem: Incompleteness

       This model is incomplete for Core-HOL, i.e. there are  
always true terms for which this fact can not be derived.
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How to built theories  
in a logically safe manner ?

• It is straight-forward to prove for the semantic interpretations 
I
standard

, I
henkin 

, I
construct  

for HOL types, terms and formulas in ZFC

• (Meta) Theorem: Consistency relative to ZFC

        IHenkin : τ => V and IHenkin 
: T => V build a model for  

Core-HOL, i.e. they satisfy all core axioms for all  
assignments of the free variables they contain. 

• (Meta) Theorem: Incompleteness

       This model is complete for Core-HOL, i.e. there are  
always true terms for which this fact can not be derived.
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How to built theories  
in a logically safe manner ?

• It is straight-forward to prove for the semantic interpretations 
I
standard

, I
henkin 

, I
construct  

for HOL types, terms and formulas in ZFC

• (Meta) Theorem: Consistency relative to ZFC

        IConstruct : τ => V and IConstruct : T => V build a model for  

Core-HOL, i.e. they satisfy all core axioms for all  
assignments of the free variables they contain. 

• (Meta) Theorem: Incompleteness

       This model is incomplete for Core-HOL, but there exists  
an Isomorphism between proofs and (inhabited) types (HoCuSo).



21/1/21 B. Wolff  -  M1-PIA Semantics and Constructions

How to built theories  
in a logically safe manner ?

• Is Isabelle/HOL a correct implementation of HOL?

– Isabelle as a system clearly contains bugs; but that does  
not mean that logical inferences produce false results 

– Isabelle has a kernel architecture 
 it is a member of the LCF-style systems that  
 protects „theorems“, i.e. triples of the form: 
 

            Γ ⊢
Θ

 φ 
by a fairly small abstract data-type.

– Isabelle can generate proof-objects which can be checked  
outside Isabelle, in principle by  any other HOL prover.

– It is heavily tested and used for a long time.
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Conservative 


Theory Extensions 
in  

Isabelle/HOL 
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How to built theories  
in a logically safe manner ?

• Are Extensions of HOL, so for example,  
the library „Main“, logically safe ?

– not necessarily, adding arbitrary axioms  
command ruins consistency easily.

– some proof-methods are not based on the kernel 
(sorry, self-built oracles, the code-generator)

– However, Isabelle encourages to use conservative 
specification constructs which are in some 
cases even formally shown to be logically safe.
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Isabelle Specification Constructs
● Constant Definitions: 

 
 
          example:  definition C::"bool ⇒ bool” where "C x = x" 

● Type Definitions: 
 
 
             example: typedef even = "{x::int. x mod 2 = 0}“

typedef ('α1..'αn) κ =  

 “<set-expr>” <proof>     

definition f::“<τ>” 
where <name> : “f x1 … xn = <t>”    



21/1/21 B. Wolff  -  M1-PIA Semantics and Constructions

Specification Commands
● Simple Definitions (Non-Rec. core variant):


     (Σ, A) ”∈” Θ     
      
 

    (Σ ⊕ f::τ ,  A ⊕ “f x1 … xn = expr”) ”∈” Θ'


– Side-Conditions

• constant symbol f must be fresh

• f must not be contained in “expr”  

• (all type-variables occurring in expr must occur in τ)

definition f::“<τ>” 
where <name> : “f x1 … xn = expr”    
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Semantics of a „Type Definition“
● Idea: Similar to constant definitions; we define 

the new entity (“a type”) by an old one.          

● For Type Definitions, we define the new 

type to be isomorphic to a (non-empty)  
subset of an old one.


● The Isomorphism is stated by three  
(conservative) axioms.
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Semantics of a „Type Definition“
● Idea: Similar to constant definitions; we define 

the new entity (“a type”) by an old one.          


 
('α1..'αn)τ

(('α1..'αn)τ) set('α1..'αn) κ
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Isabelle Specification Constructs
● Type definition:


(Σ, A) ”∈” Θ     
     


 

  (Σ ⊕ (‘α
1
..'α

n
) κ ⊕ Abs_κ::('α

1
..'α

n
)τ ⇒ (‘α

1
..'α

n
)κ   

                                       ⊕ Rep_κ::('α
1
..'α

n
)κ ⇒ ('α

1
..'α

n
)τ      

 A  ⊕ {Rep_κ_inverse ↦ Abs_κ (Rep_κ x) = x }

                     ⊕ {Rep_κ_inject    ↦ (Rep_κ x = Rep_κ y) = (x = y) }

                     ⊕ {Rep_κ              ↦ Rep_κ x ∈ {x. expr x})                   ”∈” Θ'  

• where the type-constructor κ is “fresh” in Θ and expr is closed


• <expr:: ('α
1
..'α

n
)τ set> is non-empty (to be proven by a witness)

typedef ('α1..'αn) κ =  

 “<expr :: (('α1..'αn)τ) set>” <proof>     
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Semantics of a „Type Definition“
● Major example: Typed sets can be built following 

this scheme. The trick is to identify  α set with 
characteristic functions α ⇒ bool. 

● In Isabelle/HOL, α set is introduced  via an 
equivalent axiom scheme; the type-definition  
uses already implicitly the α set isomorphism  
to α ⇒ bool.
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Isabelle Specification Constructs
● Major example:  

The construction of the cartesian product: 

   definition Pair_Rep :: "'a ⇒ 'b ⇒ 'a ⇒ 'b ⇒ bool"  

   where    "Pair_Rep a b = (λx y. x = a ∧ y = b)"

 
definition "prod = {f. ∃ a b. f = Pair_Rep (a ∷ 'a) (b ∷ 'b)}"

   typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a ⇒ 'b ⇒ bool) set” <proof> 

   type_notation (xsymbols)  "prod"  ("(_ ×/ _)" [21, 20] 20)
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Specification Mechanism Commands
● Extended Notation for Cartesian Products: records 

(as in SML or OCaml; gives a slightly OO-flavor) 
 
 
 
 
          


● ... introduces also semantics and syntax for


– selectors :      tag1 x 

– constructors :      ⦇ tag1 = x1, ... , tagn = xn  ⦈  


– update-functions :  x ⦇ tag1 := xn ⦈

record     <c> = [<record> + ] 
tag1 :: “<τ1>” 

  ... 
  tagn :: “<τn>”          
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Specification Mechanism Commands
● Inductively Defined Sets: 

 
 
 
          


 
 
 
example: inductive_set     Even :: "int set"  
              where   null: "0 ∈ Even" 
                              | plus:"x ∈ Even ⟹ x+2 ∈ Even”  

                              | min :"x ∈ Even ⟹ x-2 ∈ Even"            

inductive_set     <c> :: “  τ ⇒ τ’ set” for A::τ   

where  <thmname> : “<ϕ>”  
     | ... 

         | <thmname> = <ϕ>            
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Specification Mechanism Commands
● These are not built-in constructs, rather they are based on a series 
of definitions and typedefs.


The machinery behind is based on a fixed-point combinator on 
sets :


  lfp :: “('α set ⇒ 'α set) ⇒ 'α set” 

which can be conservatively defined by


              "lfp f = ⋂ {u. f u ⊆ u}” 

and which enjoys a constrained fixed-point property:

 
                 mono f ⟹ lfp f = f (lfp f)
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Specification Mechanism Commands
● Example : Even (see before)


– the set Even is conservatively defined by: 
 
 Even = lfp (λ X.  {0} ∪  (λ x. x + 2) ` X ∪  (λ x. x - 2) ` X) 

– from which the properties: 
 
    null: "0 ∈ Even"   
    plus:"x ∈ Even ⟹ x+2 ∈ Even" 
    min :"x ∈ Even ⟹ x-2 ∈ Even" 

are derived automatically behind the scenes



21/1/21 B. Wolff  -  M1-PIA Semantics and Constructions

Specification Mechanism Commands
● Variante: Inductively Defined Predicates: 

 
 
 
          


 
 
example: inductive path for rel ::"'a ⇒ 'a ⇒ bool" 

              where  base : “path rel x x” 

                  |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ] 
where  <thmname> : “<ϕ>”  

     | ... 
         | <thmname> = <ϕ>            
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Specification Mechanism Commands
● Datatype Definitions (similar SML/OCaml/Haskell): 

(Machinery behind : complex series of const and typedefs !) 
 
 
 
          


● Recursive Function Definitions: 
(Machinery behind: Veeery complex series of  
const and typedefs and automated proofs!) 
 
 
 
              

datatype ('a1..'an) T =  
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where 
     “<c> <pattern> = <t>” 
| ... 

  |   “<c> <pattern> = <t>”               
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Specification Mechanism Commands
● Datatype Definitions (similar SML): 

Examples: 
 
 
datatype mynat = ZERO | SUC mynat


    datatype 'a list = MT | CONS "'a" "'a list"
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Some more Automation 

in Isabelle/HOL 
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More on Proof-Methods
● Some advanced automated proof-methods 

use theorem data-bases stored in the 
global context of a theory 


● This holds for:

● equational reasoning (rewriting : simp, metis)

● classical reasoning   (fast, blast)

● combined methods   (auto, cases, induct)


● Specification Constructs generate theorems and  
sets up these “background theories” automatically
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More on Proof-Methods
● Some composed methods  

(internally based on assumption, erule_tac and 
 rule_tac + tactic code that constructs the 
 substitutions)


– simp

     (arbitrary number of left-to-right rewrites,  
assumption  or rule refl attepted at the end;  
a global simpset in the background is used.)

– simp add: <equation> ...  <equation>

– simp only: <equation> ...  <equation> 
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More on Proof-Methods
● Some composed methods  

(internally based on assumption, erule_tac and 
 rule_tac + tactic code that constructs the substitutions)


– auto  
(apply in exhaustive, non-deterministic manner: 
 all introduction rules, elimination rules and 

– auto intro: <rule> ... <rule> 
     elim:   <erule> ... <erule> 
     simp:   <equation> ... <equation> 
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More on Proof-Methods
● Some composed methods  

(internally based on assumption, erule_tac and 
 rule_tac + tactic code that constructs the 
 substitutions)


– cases „<formula>“ 
(split top goal into 2 cases:  
  <formula> is true or  <formula> is false)

– cases „<variable>“ 
(- precondition : <variable> has type t which is a data-type)  
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“ 
(- precondition : <variable> has type t which is a data-type)  
search for induction rule and do induction over this variable.
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Screenshot with Examples

1/4/21
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Conclusion
● HOL has several Models in ZFC, 

incomplete, complete, and constructivist ones

● Models justify the notion of “conservative theory 

extensions” (definition, type-definition, …)

● Isabelle supports a number of “specification  

constructs” built from conservative theory extensions

● Isabelle/HOL’s library is built uniquely from them 

which guarantees logical consistency by construction

● Isabelle/HOL possesses a kernel-architecture 

in the tradition of so-called “LCF-style provers”


